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Introduction

Electron beam curing of Polymer Matrix Composites (PMCs) is a nonthermal, nonautoclave curing

process that has been demonstrated to be a cost effective and advantageous alternative to

conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing

costs; significantly reduced curing times; improvements in part quality and performance; reduced

environmental and health concerns; and improvement in material handling. In 1994 a Cooperative

Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense

Programs and 10 industrial partners, was established to advance the electron beam curing of PMC

technology. Over the last several years a significant amount of effort within the CRADA has been

devoted to the development and optimization of resin systems and PMCs that match the performance

of thermal cured composites. This highly successful materials development effort has resulted in

a board family of high performance, electron beam curable cationic epoxy resin systems possessing

a wide range of excellent processing and property profiles. Hundreds of resin systems, both

toughened and untoughened, offering unlimited formulation and processing flexibility have been

developed and evaluated in the CRADA program.

*Cooperative Research and Development Agreement (CRADA) No. Y 1293-0233.

**Managed by Lockheed Martin Energy Research Corporation for the U.S. Department of Energy
under contract DE-AC05-96OR22464.

***Managed by Lockheed Martin Energy Systems for the U.S. Departrnent of Energy under contract

DE-AC05- 84OR21400.
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Our research has determined that conventional epoxy resins can be cured by exposure to electron

beam radiation as provided by a high energy/power electron beam accelerator to provide materials

with high glass transition temperatures and mechanical properties comparable to thermally cured

epoxies (1-3). A cationic photoinitiator at a concentration of 1-3 parts per hundred of the epoxy

resin is required for this process. These cationic photoinitiators are triaryl sulfonium and

diaryliodonium salts of weakly nucleophilic anions. Diaryliodoniurn salts of the

hexafluoroantimonate anion have been found to be the most effective commercially available

photoinitiators. The cationic photoinitiator decomposes when subjected to irradiation from

ultraviolet light or high energy electrons to produce a Bronsted acid (proton) which catalyzes the ring

opening polymerization of the epoxy group. The weakly nucleophilic anion from the initiator is not

strongly attracted to the cation that is generated, nor does it interfere with the growing polymer chain

(4). Properties of the electron beam cured cationic epoxies include: glass transition temperatures

(Tg's) ranging from 100-400°C (212-752°F), high flexural moduli [up to 4.0 GPa, (580 ksi)], low

moisture absorption (<2%), good toughness obtained by the addition of toughening agents [0.41-0.92

MPam'/q (373-837 psi in i/,); and low-moderate cost of the epoxy resin-photoinitiator compositions.

Several toughened and untoughened compositions were selected for evaluation as composite

matrices. PMCs made from these easily processed resins have exhibited: low shrinkage after

electron beam cure, low void content (0.6-1.8%) and good mechanical properties with IM7 carbon

fiber [0 ° flexurai strengths, 1.71-2.01 GPa (248-292 ksi); 0 ° flexural moduli, 150-196 GPa (21.8-

28.4 msi; and 0 ° interlaminar shear strengths 77-89 MPa (11.2-12.9 ksi)]. Many composite parts

manufactured via hand lay-up, tow/tape placement, filament winding, resin transfer molding (RTM),

and vacuum assisted resin transfer molding (VARTM) have been produced using these materials,

demonstrating their fabrication versatility.

Electron beam processing is potentially more economical than conventional thermal cure processing.

Complex part shapes can be made with inexpensive tooling and part throughput is extremely high.

Since electron beam curing is at near ambient temperatures, inexpensive, lightweight, and disposable

fabrication tools or mold materials such as thermoplastics, foam plastics, plasters, waxes, and wood

can be used instead of metals. Electron beam processing also allows the simultaneous curing of

several different cationic epoxy resin compositions. Thus, a single composite structure fabricated

from electron curable cationic epoxies with different thermal and mechanical properties can be cured

in a single cycle. As electron beam curing can be conducted at room temperature or lower, stresses

are reduced. This factor can be critical in the design of structures such as cryogenic tanks that must

perform at low temperatures. Electron beam curable epoxy resins are friendly to the environment

and greatly reduce the amount of waste generated in composite fabrication processes. No hardener

such as an amine is required - only a few parts per hundred of a relatively nontoxic photoinitiator.

Formulated and prepregged resin have essentially unlimited pot life and shelf life at room

temperature provided that the resins are not exposed to ultraviolet or sunlight.

One particular epoxy resin-photoinitiator composition (designated Electron Beam Resin 8H)

exhibited a very high glass transition temperature after electron beam curing; Tg, 396°C (745°F)

from the peak of the DMA tan delta curve. This resin was extensively evaluated as a matrix resin

for PMCs using Hercules IM7-GP-12K carbon fiber. Unidirectional prepreg of 8H with this fiber

was manufactured by YLA, Inc. of Benicia, California. All test panels (16 plies unidirectional x 30.5
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cm x 30.5cm) werepreparedusingconventionallay-uptechniques.Intermediatedebulkswere
conductedundervacuumbagpressureeveryfour pliesat roomtemperaturefor 15minutes. The

final debulk and bleed cycle was performed under vacuum bag pressure at 70°C (158°F) for one

hour. The panels were electron beam cured at the Whiteshell Laboratories of Atomic Energy of

Canada Limited (AECL) using the AECL I 10/1 Electron Linear Accelerator. Curing was performed

under vacuum bag pressure while the panels were at room temperature at a dose per pass of 50 kGy

for a total dose of 250 kGy.

In a thermal cure cycle there is a considerable decrease in resin viscosity as temperature increases,

followed by an abrupt increase in viscosity with the onset of gelation. This factor combined with

autoclave pressures may allow poorly laid-up laminates to be well consolidated. Since electron

beam curing occurs at near ambient temperature, there is no viscosity decrease before gelation and

curing. Thus, lay-up technique is critical in obtaining, good laminate properties. To date the best

series of panels had a void volume of 1.77% by acid digestion, with the following room temperature

mechanical properties: 0° flexural strength, 1.99 GPa (288 ksi); 0° flexural modulus, 196 GPa (28.4

msi); 0 ° compressive strength, 1.57 GPa (228 ksi); 0 ° compressive modulus, 149 GPa (21.6 msi);

and 0 ° interlaminar shear strength, 77 MPa (11.2 ksi). Long term aging studies were conducted on

early specimens of these laminates at NASA Lewis Research Center (LeRC). Weight loss in air after

1000 hours at 232°C (450°F) was only 4.25% but 18.4% after 1000 hours at 288°C (550°F).

Mechanical properties were not significantly changed after 1000 hours at 232°C, but noticeably

deteriorated on aging at 288°C.

Future efforts in the area of electron beam cured PMC's for high temperature applications will focus

on improving the quality of electron beam resin 8H laminates and more extensive testing. Research

efforts will also be directed toward the development of electron beam curable polyimides as part of

a project sponsored by NASA LeRC.
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Presentation Outline

• Introduction

• Electron Beam Curable Cationic Epoxy Resins
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Introduction

• Electron Beam Curing is a Very

Fast, Nonthermal, Nonautoclave

curing method that uses High-

Energy, High-Power Radiation

to cure polymer matrix

composites.
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ADVANTAGES OF PMC ELECTRON BEAM CURING

OVER THERMAL CURING

• Shorter cure times

• Amenable to high production rates

• Lower overall energy requirements

• Reduced thermal stresses in cured part

• Effective with thick PMC parts

• Lower tooling costs

• Reduced environmental, safety, and health concerns

• Improved material handling

• Reduced overall manufacturing costs (25% - 65% Cost Savings vs Thermal

cameo

Paper 4

The CRADA Has Developed Hundreds Of EB

Curable Cationic Epoxy Resin Systems

(Toughened and Untoughened)
_aoxtes

• Bisphenol A Liquid Epoxy Resins

• Bisphenol F Epoxy Liquids

• Epoxy Novola¢ Resins

• Multifunctional Epoxy Resins

• Cycloaliphatic Epoxy Liquids

• Hydrocarbon Epoxies

• Toughened Epoxies

• Flexible Epoxies

• Fusion Solid Epoxies

• Multi-Epoxy Resins (Blends)

• Diluted Liquid Epoxy Resins

• Multifunetional Epoxy Diluents

Cationic Initiators (wl Various Anions)

• Diaryliodonium Salts

• Triarylsulfonium Salts

• Iron Complexes

• Diaryldisulfones

• Triazine Compounds

• Engineering Thermoplastics

• Hydroxy-Containing Thermoplastics

• Reactive Flexibilizers

• Elastomers

• Rubbers

• Undissolved Thermoset Particles

• Undissolved Thermoplastic Particles

• Polyarylates
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Advantages of Electron Beam

Curable Cationic Epoxies
• Most Commercially Available (Non-Amine Containing)

Epoxies EB Cure

• Unlimited Variety Of Epoxy Resin Systems Can Be

Formulated

• No Hardeners Required (less environmental/health

concerns)

• Indefinite Shelf Life (must be kept away from UV)

• No Oxygen Inhibition Problems During Cure

• Resin System Costs Are Comparable To Thermally

Curable Epoxy Variants

Advantages of Electron Beam Curable

Cationic Epoxies (Resin Properties Only)

Minimal Volatile Emissions During Cure; (< 0.1%)

Wide Range Of T_ (tan delta); 130 to >3950C; (Tg - Tcure) ranged from 100 to >
3700C

Very_ Low Water Absorption After 48 hr. H20 boil; some < 1% most < 2%: vs.
thermal cured epoxies 3-6%

J._y__arJ_dl_; 2 - 3% vs. thermal cured epoxies 4-6% vs. EB cured acrylates 8-
20*

i_eslns Are Tou_henable; RT Ktes ranged from 0.41-0.97 MPa tn°'s vs. 0.90 for

Fiberite 977-3; -1000C Kits surpass RT valu_

Low Total Mass Loss; 0.05-1.00% for resins after vacuum oven aging

@125°C/5days vs. goal of <1% for composites
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Highlights of EB Curable Cationic

Epoxy Containing Composites

• Many Cat. Epoxies Have Been Successfully Prepr___ged

- Numerous prepregs have been made via solution dip, direct hot melt coating, and

film calendering methods

• Many Cat. Epoxies Have Been Processed Using Several Fabrication Methods

- Many PMC parts have been manufactured via hand lay-up, tow placement, filament

winding, RTM, and VARTM processes

• Void Contents Are Comparable To Autoclave Cured PMCs

- Many PMCs fabricated using hand lay-up and filament winding processes have less
than 1% void contents

• Improved Mechanical Properties Compared To Autoclave Cured PMCs

- PMCs exhibit some mechanical properties exceeding those of Fiberite's, autoclave

cured, 977-2 and 977-3 toughened epoxy PMCs

• Cryogenic & Thermal Cyclin_ Of PMCs Showed Excellent Retention Of Properties

- Mechanical properties of PMCs after cryogenic & thermal cycling were unaffected
and in some cases increased in value

Property_ Com narison Of Electron Beam Cured Vemus Thermal Cured IM71Resin IXI Unidirectional Laminates

/Data Normalized to 62% fiber volume)
Fiber_ 977:2

Resin (Fibente
Systems Marketing

iterature Data
Autoclave

Cure Cured (6 hrs.

Conditions @ 350°F @ 8=_

psi)

VoidVolume, i NotReported
%

Tg,*C(Tan
l_lta)

(:3*Rex. Str.,
MPa(ksi)

0 ° Flex, Mod..

GPa (msi)

(3*Comp.Str.,
MPa(ksi)

(3*Comp.,
Mod.,GPa

(msi)

(3*ILSS,MPa
(ksi)

Hot/WetO°
ILSS*,MPa

Iksi_

" 1wk.in H20 @ 1600F,tested@ 2200F

200

1641 (238)

147 (21.3)

1580 (230)

152 (22)

110 (16)

- Fiberite 977-3

(Fiberite

Marketing
Literature Data

Autoclave

Cured (3 hrs. "

@ 355"F @ 85

psi)

Not Reported

190/240

1765 (256)

150 (21.7)

1680 (244)

154 (22.3)

127(18.5)

89 (12.9)

r EB ' EB Resin 3 EB Resin 1
EB Resin Resin 2 41EB Resin 5

8. i !

250 kGy

1.77

396

1986 (288)

196 (28.5)

1565 (227)

149 (21.6)

77 (11.2)

61 (8.8)

150 kGy

O.72

392

2006 (291)

163 (23.6)

79 (11.5)

150 kGy

1.24

232

1793 (260)

163 (23.7)

79 (11.5)

150 kGy

0.64

212

1765 (256)

154 (22.3)

89 (12.9)

150 kGy

1.18

212

1710 (248)

150 (21.8)

77 (11.2)
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FLEXURAL STRENGTH OF ELECTRON BEAM RESIN 8HllM7

UNIDIRECTIONAL LAMINATES VERSUS AGING TIME IN AIR-
TESTED AT 25°C
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FLEXURAL MODULUS OF ELECTRON BEAM RESIN 8HIIM7
UNIDIRECTIONALLAMINATES VERSUS AGING TIME IN AIR -

TESTED AT 25°C
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SUMMARY AND CONCLUSIONS

• Electron Beam Resin 8H exhibited a glass transition temperature of 396°C (745°F)

after electron beam cure at room temperature

• Electron Beam Resin 8H/IM7 laminates exhibit good mechanical properties at 25°C

• Weight loss for the laminates is 4.25 and 18.4% after 1000 hours in air at 232°C

(450°F) and 288°C (550°F), respectively

• Mechanical properties of Electron Beam Resin 8H are not affected by aging at 232°C,

but are degraded by aging at 288°C

FOCUS OF FUTURE HIGH TEMPERATURE ELECTRON BEAM

RESIN RESEARCH

• Optimize Electron Beam Resin 8H/IM7 fabrication to maximize mechanical properties

• Rerun aging tests on optimized laminates

• Explore feasibility of electron beam curable polyimides by screening of model
compounds
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